Правила математической обработки результатов прямых измерений. Теория ошибок

В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет).

Случай 1. Число измерений меньше пяти.

1) По формуле (6) находится средний результат x , определяемый как среднее арифметическое от результатов всех измерений, т.е.

2) По формуле (12) вычисляются абсолютные погрешности отдельных измерений

.

3) По формуле (14) определяется средняя абсолютная погрешность

.

4) По формуле (15) вычисляют среднюю относительную погрешность результата измерений

.

5) Записывают окончательный результат по следующей форме:

, при
.

Случай 2 . Число измерений свыше пяти.

1) По формуле (6) находится средний результат

.

2) По формуле (12) определяются абсолютные погрешности отдельных измерений

.

3) По формуле (7) вычисляется средняя квадратическая погрешность единичного измерения

.

4) Вычисляется среднее квадратическое отклонение для среднего значения измеряемой величины по формуле (9).

.

5) Записывается окончательный результат по следующей форме

.

Иногда случайные погрешности измерений могут оказаться меньше той величины, которую в состоянии зарегистрировать измерительный прибор (инструмент). В этом случае при любом числе измерений получается один и тот же результат. В подобных случаях в качестве средней абсолютной погрешности
принимают половину цены деления шкалы прибора (инструмента). Эту величину иногда называют предельной или приборной погрешностью и обозначают
(для нониусных приборов и секундомера
равна точности прибора).

Оценка достоверности результатов измерений

В любом эксперименте число измерений физической величины всегда по тем или иным причинам ограничено. В связи с этим может быть поставлена задача оценить достоверность полученного результата. Иными словами, определить, с какой вероятностью можно утверждать, что допущенная при этом оши­бка не превосходит наперед заданную величину ε. Упомянутую вероятность принято называть доверительной вероятностью. Обозначим её буквой.

Может быть поставлена и обратная задача: определить границы интервала
, чтобы с заданной вероятностью можно было утверждать, что истинное значение измерений величины не выйдет за пределы указанного, так называемого доверительного интервала.

Доверительный интервал характеризует точность полученного результата, а доверительная вероятность - его надёжность. Методы решения этих двух групп задач имеются и особенно подробно разработаны для случая, когда погрешности измерений распределены по нормальному закону. Теория ве­роятностей даёт также методы для определения числа опытов (повторных измерений), при которых обеспечивается заданная точность и надёжность ожидаемого результата. В данной работе эти методы не рассматриваются (ограничимся только их упоминанием), так как при выполнении лабораторных работ подобные задачи обычно не ставятся.

Особый интерес, однако, представляет случай оценки достоверности результата измерений физических величин при весьма малом числе повторных измерений. Например,
. Это именно тот случай, с которым мы часто встречаемся при выполнении лабораторных работ по физике. При решении указанного рода задач рекомендуется использовать метод, в основе которого лежит распределение (закон) Стьюдента.

Для удобства практического применения рассматриваемого метода имеются таблицы, с помощью которых можно определить доверительный интервал
, соответствующий заданной доверительной вероятности или решить обратную задачу.

Ниже приведены те части упомянутых таблиц, которые могут потребоваться при оценке результатов измерений на лабораторных занятиях.

Пусть, например, произведено равноточных (в одинаковых условиях) измерений некоторой физической величины и вычислено её среднее значение . Требуется найти доверительный интервал , соответствующий заданной доверительной вероятности . Задача в общем виде решается так.

По формуле с учётом (7) вычисляют

Затем для заданных значений n и находят по таблице (табл. 2) величину . Искомое значение вычисляется на основе формулы

(16)

При решении обратной задачи вначале вычисляют по формуле (16) параметр. Искомое значение доверительной вероятности берётся из таблицы (табл. 3) для заданного числа и вычисленного параметра .

Таблица 2. Значение параметра при заданных числе опытов

и доверительной вероятности

Таблица 3 Значение доверительной вероятности при заданном числе опытов n и параметре ε

Для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. В результате проведенных измерений мы получили значений величины:

x 1 , x 2 , x 3 , ... x n . (2)

Этот ряд значений величины x получил название выборки. Имея такую выборку, мы можем дать оценку результата измерений. Величину, которая будет являться такой оценкой, мы обозначим . Но так как это значение оценки результатов измерений не будет представлять собой истинного значения измеряемой величины, необходимо оценить его ошибку. Предположим, что мы сумеем определить оценку ошибки Δx . В таком случае мы можем записать результат измерений в виде

µ = ± Δx (3)

Так как оценочные значения результата измерений и ошибки Δx не являются точными, запись (3) результата измерений должна сопровождаться указанием его надежности P. Под надежностью или доверительной вероятностью понимают вероятность того, что истинное значение измеряемой величины заключено в интервале, указанном записью (3). Сам этот интервал называется доверительным интервалом.

Например, измеряя длину некоторого отрезка, окончательный результат мы записали в виде

l = (8.34 ± 0.02) мм, (P = 0.95)

Это означает, что из 100 шансов – 95 за то, что истинное значение длины отрезка заключается в интервале от 8.32 до 8.36 мм .

Таким образом, задача заключается в том, чтобы, имея выборку (2), найти оценку результата измерений , его ошибку Δx и надежность P.

Эта задача может быть решена с помощью теории вероятностей и математической статистики.

В большинстве случаев случайные ошибки подчиняются нормальному закону распределения, установленного Гауссом. Нормальный закон распределения ошибок выражается формулой

(4)

где Δx – отклонение от величины истинного значения;

σ – истинная среднеквадратичная ошибка;

σ 2 – дисперсия, величина которой характеризует разброс случайных величин.

Как видно из (4) функция имеет максимальное значение при x = 0 , кроме того, она является четной.

На рис.16 показан график этой функции. Смысл функции (4) заключается в том, что площадь фигуры, заключенной между кривой, осью Δx и двумя ординатами из точек Δx 1 и Δx 2 (заштрихованная площадь на рис.16 ) численно равна вероятности, с которой любой отсчет попадет в интервал (Δx 1 ,Δx 2) .

Поскольку кривая распределена симметрично относительно оси ординат, можно утверждать, что равные по величине, но противоположные по знаку ошибки равновероятны. А это дает возможность в качестве оценки результатов измерений взять среднее значение всех элементов выборки (2)

где – n число измерений.

Итак, если в одних и тех же условиях проделано n измерений, то наиболее вероятным значением измеряемой величины будет ее среднее значение (арифметическое). Величина стремится к истинному значению μ измеряемой величины при n → ∞.

Средней квадратичной ошибкой отдельного результата измерения называется величина

. (6)

Она характеризует ошибку каждого отдельного измерения. При n → ∞ S стремится к постоянному пределу σ

σ = lim S. (7)
n → ∞

С увеличением σ увеличивается разброс отсчетов, т.е. становится ниже точность измерений.

Среднеквадратичной ошибкой среднего арифметического называется величина

. (8)

Это фундаментальный закон возрастания точности при росте числа измерений.

Ошибка характеризует точность, с которой получено среднее значение измеренной величины . Результат записывается в виде:

Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 – 50 раз.

В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n → ∞ переходит в распределение Гаусса, а при малом числе отличается от него.

Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом
Стьюдента t.

Опуская теоретические обоснования его введения, заметим, что

Δx = · t. (10)

где Δx – абсолютная ошибка для данной доверительной вероятности;
– среднеквадратичная ошибка среднего арифметического.

Коэффициенты Стьюдента приведены в таблице 2 .

Для этого удобнее воспользоваться таблицей 3, в которой интервалы заданы в долях величины σ, являющейся мерой точности данного опыта по отношению к случайным ошибкам.

Таблица 2
Коэффициенты Стьюдента
n Значения Р
0.6 0.8 0.95 0.99 0.999
2 1.376 3.078 12.706 63.657 636.61
3 1.061 1.886 4.303 9.925 31.598
4 0.978 1.638 3.182 5.841 12.941
5 0.941 1.533 2.776 4.604 8.610
6 0.920 1.476 2.571 4.032 6.859
7 0.906 1.440 2.447 3.707 5.959
8 0.896 1.415 2.365 3.499 5.405
9 0.889 1.397 2.306 3.355 5.041
10 0.883 1.383 2.262 3.250 4.781
11 0.879 1.372 2.228 3.169 4.587
12 0.876 1.363 2.201 3.106 4.437
13 0.873 1.356 2.179 3.055 4.318
14 0.870 1.350 2.160 3.012 4.221
15 0.868 1.345 2.145 2.977 4.140
16 0.866 1.341 2.131 2.947 4.073
17 0.865 1.337 2.120 2.921 4.015
18 0.863 1.333 2.110 2.898 3.965
19 0.862 1.330 2.101 2.878 3.922
20 0.861 1.328 2.093 2.861 3.883
21 0.860 1.325 2.086 2.845 3.850
22 0.859 1.323 2.080 2.831 3.819
23 0.858 1.321 2.074 2.819 3.792
24 0.858 1.319 2.069 2.807 3.767
25 0.857 1.318 2.064 2.797 3.745
26 0.856 1.316 2.060 2.787 3.725
27 0.856 1.315 2.056 2.779 3.707
28 0.855 1.314 2.052 2.771 3.690
29 0.855 1.313 2.048 2.763 3.674
30 0.854 1.311 2.045 2.756 3.659
31 0.854 1.310 2.042 2.750 3.646
40 0.851 1.303 2.021 2.704 3.551
60 0.848 1.296 2.000 2.660 3.460
120 0.845 1.289 1.980 2.617 3.373
0.842 1.282 1.960 2.576 3.291
Таблица 3
Необходимое число измерений для получения ошибки Δ с надежностью Р
Δ = Δx/σ Значения Р
0.5 0.7 0.9 0.95 0.99 0.999
1.0 2 3 5 7 11 17
0.5 3 6 13 18 31 50
0.4 4 8 19 27 46 74
0.3 6 13 32 46 78 127
0.2 13 29 70 99 171 277
0.1 47 169 273 387 668 1089

При обработке результатов прямых измерений предлагается следующий порядок операций:

  1. Результат каждого измерения запишите в таблицу.
  2. Вычислите среднее значение из n измерений
  3. Найдите погрешность отдельного измерения

В общем случае порядок обработки результатов прямых измерений следующий (предполагается, что систематических ошибок нет).

Случай 1. Число измерений меньше пяти.

x , определяемый как среднее арифметическое от результатов всех измерений, т.е.

2) По формуле (12) вычисляются абсолютные погрешности отдельных измерений

3) По формуле (14) определяется средняя абсолютная погрешность

.

4) По формуле (15) вычисляют среднюю относительную погрешность результата измерений

5) Записывают окончательный результат по следующей форме:

Случай 2 . Число измерений свыше пяти.

1) По формуле (6) находится средний результат

2) По формуле (12) определяются абсолютные погрешности отдельных измерений

3) По формуле (7) вычисляется средняя квадратическая погрешность единичного измерения

.

4) Вычисляется среднее квадратическое отклонение для среднего значения измеряемой величины по формуле (9).

5) Записывается окончательный результат по следующей форме

Иногда случайные погрешности измерений могут оказаться меньше той величины, которую в состоянии зарегистрировать измерительный прибор (инструмент). В этом случае при любом числе измерений получается один и тот же результат. В подобных случаях в качестве средней абсолютной погрешности принимают половину цены деления шкалы прибора (инструмента). Эту величину иногда называют предельной или приборной погрешностью и обозначают (для нониусных приборов и секундомера равна точности прибора).

Оценка достоверности результатов измерений

В любом эксперименте число измерений физической величины всегда по тем или иным причинам ограничено. В связи с этим может быть поставлена задача оценить достоверность полученного результата. Иными словами, определить, с какой вероятностью можно утверждать, что допущенная при этом оши­бка не превосходит наперед заданную величину ε. Упомянутую вероятность принято называть доверительной вероятностью. Обозначим её буквой .



Может быть поставлена и обратная задача: определить границы интервала , чтобы с заданной вероятностью можно было утверждать, что истинное значение измерений величины не выйдет за пределы указанного, так называемого доверительного интервала.

Доверительный интервал характеризует точность полученного результата, а доверительная вероятность - его надёжность. Методы решения этих двух групп задач имеются и особенно подробно разработаны для случая, когда погрешности измерений распределены по нормальному закону. Теория ве­роятностей даёт также методы для определения числа опытов (повторных измерений), при которых обеспечивается заданная точность и надёжность ожидаемого результата. В данной работе эти методы не рассматриваются (ограничимся только их упоминанием), так как при выполнении лабораторных работ подобные задачи обычно не ставятся.

Особый интерес, однако, представляет случай оценки достоверности результата измерений физических величин при весьма малом числе повторных измерений. Например, . Это именно тот случай, с которым мы часто встречаемся при выполнении лабораторных работ по физике. При решении указанного рода задач рекомендуется использовать метод, в основе которого лежит распределение (закон) Стьюдента.

Для удобства практического применения рассматриваемого метода имеются таблицы, с помощью которых можно определить доверительный интервал , соответствующий заданной доверительной вероятности или решить обратную задачу.

Ниже приведены те части упомянутых таблиц, которые могут потребоваться при оценке результатов измерений на лабораторных занятиях.

Пусть, например, произведено равноточных (в одинаковых условиях) измерений некоторой физической величины и вычислено её среднее значение . Требуется найти доверительный интервал , соответствующий заданной доверительной вероятности . Задача в общем виде решается так.

По формуле с учётом (7) вычисляют

Затем для заданных значений n и находят по таблице (табл. 2) величину . Искомое значение вычисляется на основе формулы

При решении обратной задачи вначале вычисляют по формуле (16) параметр . Искомое значение доверительной вероятности берётся из таблицы (табл. 3) для заданного числа и вычисленного параметра .

Таблица 2. Значение параметра при заданных числе опытов

и доверительной вероятности

n 0,5 0,6 0,7 0,8 0,9 0,95 0.98 0,99 0.995 0,999
1,000 1,376 1,963 3,08 6,31 12,71 31,8 63,7 127,3 637,2
0,816 1,061 1,336 1,886 2,91 4,30 6,96 9,92 14,1 31,6
0,765 0,978 1,250 1,638 2,35 3,18 4,54 5,84 7,5 12,94
0,741 0,941 1,190 1,533 2,13 2,77 3,75 4,60 5,6 8,61
0,727 0,920 1,156 1,476 2,02 2,57 3,36 4,03 4,77 6,86
0.718 0,906 1,134 1,440 1,943 2,45 3,14 3,71 4,32 5,96
0,711 0,896 1,119 1,415 1,895 2,36 3,00 3,50 4,03 5,40
0,706 0,889 1,108 1,397 1,860 2,31 2,90 3,36 3,83 5,04
0,703 0,883 1,110 1,383 1,833 2,26 2,82 3,25 3,69 4,78

Таблица 3 Значение доверительной вероятности при заданном числе опытов n и параметре ε

n 2,5 3,5
0,705 0,758 0,795 0,823
0,816 0,870 0,905 0,928
0,861 0,912 0,942 0,961
0,884 0,933 0,960 0,975
б 0,898 0,946 0,970 0,983
0,908 0,953 0,976 0,987
0,914 0,959 0,980 0,990
0,919 0.963 0,983 0,992
0,923 0,969 0,985 0,993

Обработка результатов косвенных измерений

Очень редко содержание лабораторной работы или научного эксперимента сводится к получению результата прямого измерения. Большей частью искомая величина является функцией нескольких других величин.

Задача обработки опытов при косвенных измерениях заключается в том, чтобы на основании результатов прямых измерений некоторых величин (аргументов), связанных с искомой величиной определённой функциональной зависимостью, вычислить наиболее вероятное значение искомой величины и оценить погрешность косвенных измерений.

Существует несколько способов обработки косвенных измерений. Рассмотрим следующие два способа.

Пусть по методу косвенных измерений определяется некоторая физическая величина.

Результаты прямых измерений ее аргументов х, у, z приведены в табл. 4.

Таблица 4

Номер опыта x y z
n

Первый способ обработки результатов заключается в следующем. С помощью расчетной (17) формулы вычисляют искомую величину по результатам каждого опыта

(17)

Описанный способ обработки результатов применим, в принципе, во всех без исключения случаях косвенных измерений. Однако наиболее целесообразно применять его тогда, когда число повторных измерений аргументов небольшое, а расчётная формула косвенно измеряемой величины сравнительно проста.

При втором способе обработки результатов опытов вначале вычисляют, используя результаты прямых измерений (табл. 4), средние арифметические значения каждого из аргументов, а также погрешности их измерения. Подставив , , ,... в расчетную формулу (17), определяют наиболее вероятное значе­ние измеряемой величины

(17*)

и выполняют оценку результатов косвенных измерений величины.

Второй способ обработки результатов применим лишь к таким косвенным измерениям, при которых истинные значения аргументов от измерения к измерению остаются постоянными.

Погрешности косвенных измерений величины зависят от погрешностей прямых измерений её аргументов.

Если систематические погрешности измерений аргументов исключены, а случайные погрешности измерения этих аргументов не зависят друг от друга (некореллированы), то ошибка косвенного измерения величины определяется в общем случае по формуле:

, (18)

где , , - частные производные; , , – средние квадратические погрешности измерения аргументов , , , …

Относительная погрешность вычисляется по формуле

(19)

В ряде случаев значительно проще (с точки зрения обработки результатов измерений) вычислить вначале относительную погрешность , а затем, используя формулу (19), абсолютную погрешность результата косвенного измерения:

При этом формулы для вычисления относительной погрешности результата составляются в каждом отдельном случае в зависимости от того, каким образом искомая величина связана своими аргументами. Имеются таблицы формул относительных погрешностей для наиболее часто встречающихся видов (структуры) расчётных формул (табл. 5).

Таблица 5 Определение относительной погрешности , допускаемой при вычислении приближенной величины , зависящей от приближённой .

Характер связи главной величины с приближенными величинами Формула для определения относительной погрешности
Сумма:
Разность:
Произведение:
Частное:
Степень:

Изучение нониусов

Измерение длины производится с помощью масштабных линеек. Для увеличения точности измерения пользуются вспомогательными подвижными шкалами - нониусами. Например, если масштабная линейка разделена на миллиметры, т. е. цена одного деления линейки 1 мм , то с помощью нониуса можно повысить точность измерении по ней до одной десятой или более мм .

Нониусы бывают линейными и круговыми. Разберем устройство линейного нониуса. На нониусе делений, которые в сумме равны 1 делению основной шкалы. Если - цена деления нониуса, - цена деления масштабной линейки, то можно написать

. (21)

Отношение называется точностью нониуса. Если, например, b =1 мм , a m =10, то точность нониуса 0,1 мм .

Из рис. 3 видно, что искомая длина тела равна:

где k - целое число делений масштабной линейки; - число делений миллиметра, которое необходимо определить с помощью нониуса.

Обозначим через п - число делений нониуса, совпадающее с любым делением масштабной линейки. Следовательно:

Таким образом, длина измеряемого тела равна целому числу k мм масштабной линейки плюс десятые доли числа миллиметров. Аналогично устроены и круговые нониусы.

Нижняя шкала наиболее распространенного микрометра представляет собой обычную миллиметровую шкалу (рис. 4).

Риски верхней шкалы сдвинуты по отношению к рискам нижней шкалы на 0,5 мм . При повороте микрометрического винта на 1 оборот барабан вместе со всем винтом передвигается на 0,5 мм , открывая или закрывая поочередно риски то верхней, то нижней шкалы. Шкала на барабане содержит 50 делений, таким образом, точность микрометра .

При отсчёте по микрометру необходимо учитывать целое число рисок верхней и нижней шкалы (умножая это число на 0,5 мм ) и номер деления барабана n , который в момент отсчёта совпадает с осью шкалы стебля D , умножая его на точность микрометра. Иными словами, числовое значение L длины из­меряемого микрометром предмета находят по формуле:

(23)

Для того чтобы измерить длину предмета или диаметр отверстия штангенциркулем (рис. 3), следует поместить предмет между неподвижной и "подвижной ножками и или развести выступы по диаметру внутри измеряемого отверстия. Движение перемещающегося устройства штангенциркуля проводится без сильного нажима. Вычисление длины производят по формуле (23), снимая отсчёт по основной шкале и нониусу.

В микрометре для измерения длины предмет зажимают между упором и микрометрическим винтом (рис. 5), вращая последний только с помощью головки , до срабатывания трещотки.

3. Вычислите среднее значение диаметра , среднеквадратическое отклонение по формулам методики обработки результатов прямых измерений (случай 2).

4. Определите границу доверительного интервала для заданной доверительной вероятности (задается преподавателем) и числа опытов n .

Сравните приборную погрешность с доверительным интервалом. В окончательный результат запишите большее значение .

Задание 2 . Определение объема цилиндра с помощью микрометра и штангенциркуля.

1. Измерьте не менее 7 раз диаметр цилиндра микрометром, а высоту штангенциркулем. Результаты измерений запишите в таблицу (табл. 7).

Таблица 7

n

. (27)

Если они отличаются хотя бы на порядок, то берется наибольшая ошибка.

9. Окончательный результат запишите в виде:

. (28)

Примечание . При расчёте приборной ошибки по формуле (25) одновременно учитывается и ошибка, обусловленная округлением чисел, так как они подчиняются одному и тому же закону распределения.

Контрольные вопросы

1. Опишите известные Вам виды измерений.

2. Дайте определение систематической и случайной ошибкам. В чём состоит их основное различие?

3. Какие виды ошибок подчиняются равномерному распределению?

4. Опишите порядок обработки результатов прямых (косвенных) измерений.

5. Почему при измерении объема цилиндра Вам рекомендовалось диаметр измерять микрометром, а высоту - штангенциркулем?

6. Относительная ошибка измерения массы тела составляет 1%, а его скорости-2%. С какой относительной ошибкой можно по таким данным вычислить кинетическую энергию тела?

Лабораторная работа №2

Номер измерения

Физика - наука экспериментальная, это означает, что физические законы устанавливаются и проверяются путем накопления и сопоставления экспериментальных данных. Цель физического практикума заключается в том, чтобы студенты изучили на опыте основные физические явления, научились правильно измерять числовые значения физических величин и сопоставлять их с теоретическими формулами.

Все измерения можно разделить на два вида – прямые и косвенные .

При прямых измерениях значение искомой величины непосредственно получается по показаниям измерительного прибора. Так, например, длина измеряется линейкой, время по часам и т. д.

Если искомая физическая величина не может быть измерена непосредственно прибором, а посредством формулы выражается через измеряемые величины, то такие измерения называются косвенными .

Измерение любой величины не дает абсолютно точного значения этой величины. Каждое измерение всегда содержит некоторую погрешность (ошибку). Ошибкой называют разность между измеренным и истинным значением.

Ошибки принято делить на систематические и случайные .

Систематической называют ошибку, которая остается постоянной на протяжении всей серии измерений. Такие погрешности обусловлены несовершенством измерительного инструмента (например, смещением нуля прибора) или методом измерений и могут быть, в принципе, исключены из конечного результата введением соответствующей поправки.

К систематическим ошибкам относятся также погрешность измерительных приборов. Точность любого прибора ограничена и характеризуется его классом точности, который, как правило, обозначен на измерительной шкале.

Случайной называется ошибка, которая изменяется в разных опытах и может быть и положительной и отрицательной. Случайные ошибки обусловлены причинами, зависящими как от измерительного устройства, (трение, зазоры, и т. п..), так и от внешних условий (вибрации, колебания напряжения в сети и т.п.).

Случайные ошибки нельзя исключить опытным путем, но их влияние на результат можно уменьшить многократными измерениями.

Вычисление погрешности при прямых измерениях среднее значение и средняя абсолютная ошибка.

Предположим, что мы проводим серию измерений величины Х. Из-за наличия случайных ошибок, получаем n различных значений:

Х 1 , Х 2 , Х 3 … Х n

В качестве результата измерений обычно принимают среднее значение

Разность между средним значением и результатом i – го измерения назовем абсолютной ошибкой этого измерения

В качестве меры ошибки среднего значения можно принять среднее значение абсолютной ошибки отдельного измерения

(2)

Величина
называется средней арифметической (или средней абсолютной) ошибкой.

Тогда результат измерений следует записать в виде

(3)

Для характеристики точности измерений служит относительная ошибка, которую принято выражать в процентах

(4)

Статьи по теме: